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Abstract

Low shot learning, or the ability to learn from a small
number of examples, is a relevant problem in the domain of
facial recognition, where access to training data is limited.
We explore a solution based on data augmentation by hal-
lucinating new examples, which was found to work well for
classification on ImageNet. We describe the performance
of this augmentation strategy for low shot learning on the
Microsoft Celeb Faces dataset in comparison to a reason-
able baseline, which we beat by 4 percentage points. We
also discuss the challenges presented by our data and an
analysis of what worked and what didn’t.

1. Introduction
Face recognition is the task of uniquely identifying a

person, given an image of their face. It is an important
problem in security systems, access control, automated
authentication, etc. This can be modeled as a classification
task where each class is a person whose identity is known.
With enough example images for each person, a classifier
can be trained using handcrafted features [1] or using
learned features [12]. Deep learning approaches to face
recognition are found to be very effective, but a significant
drawback is that they require large labeled datasets in
order to achieve good performance. This is a problem
because access to new images of faces might be limited or
expensive, along with additional issues like privacy.

To combat this problem, we explore a low-shot learning
approach to face recognition. Low-shot learning is the
ability to learn to distinguish classes from a small number
of examples. We focus on low-shot visual recognition
where AI systems are taught to recognize different objects
from images using very few examples. In the low-shot
learning set-up, there are a fixed number of base classes, for
which a large number of training examples are available,
and then there are novel classes, for which a limited number
of training examples are available. The classifier is then

Figure 1. Low shot learning approach

evaluated based on its ability to correctly classify even the
novel classes. The key idea is that the rich information
provided by the base class data helps to improve the
recognition accuracy in cases where we have lesser training
data, that is the novel classes.

For object recognition, a low-shot learning method
based on shrinking and hallucinating features was pro-
posed by Hariharan and Girshick in [6], which achieved
good results on the ImageNet classification challenge.
We will be extending their approach to the task of face
recognition to evaluate its applicability in a drastically
different domain. The solution consists of two phases, as
described in Figure 1. First, features from the base class are
learnt by a feature extractor such as a convolutional neural
network. Then, in the low shot learning phase, a classifier
is trained on features from both the base and novel classes.
The accuracy of this classifier can then be improved by
generation strategies, one of which is a novel method of
’hallucinating’ training data, proposed in [6]. The intuition
behind hallucination is that variations within a class can
be considered as transforms, which can then be applied
on other classes in order to generate new examples. We
describe this in more detail in Section 4.

We use a subset of images of celebrities available on the
web as training data, which was compiled by Microsoft Re-
search in 2016 as a benchmark for face recognition [5]. We
hope that this technique contributes to various real-world
applications, such as image captioning and news video anal-
ysis. For this report, we describe our dataset and the pre-
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processing involved, our technical approach for augmenta-
tion, challenges, and future directions.

2. Related Work

As mentioned in our introduction and abstract, our main
approach is to implement low-shot learning by hallucinating
features, which was proposed by Hariharan and Girshick [6]
in 2016 at Facebook AI Research. We also briefly discuss
other work in the field of low shot learning as well as face
recognition.

2.1. Face recognition

The most impactful work in face recognition, to our best
knowledge, was by Turk and Pentland [15] in 1991, which
projects face images to a feature space defined by the eigen-
vectors of the set of faces, called ”eigenfaces”. Their ap-
proach is unsupervised, but also requires handcrafted fea-
tures, which more recent approaches have moved away
from. Zhao, et al., in 1998 [18], propose a similar approach
based on Linear Discriminant Analysis and Principal Com-
ponent Analysis which reduce the projected feature space,
but also requires handcrafted features.

More recent models such as that by Huang, et al. [8] use
a combination of handcrafted features such as local binary
patterns (LBP) along with supervision to achieve state-of-
the-art results. [3] uses transfer learning to apply a Joint
Bayesian model [4] learnt on a large dataset and evaluate
on the Labeled Faces in the Wild benchmark [9] (LFW).

DeepFace [12] by Facebook AI Research proposed a
deep learning model that requires no handcrafted features
and only uses features learnt by a nine layer deep neural
network. They achieve close to human level performance
on the LFW benchmark.

2.2. One-shot and Low-shot learning

For one shot learning, Siamese networks [10] have been
widely adopted for a range of tasks. [10] Approached the
one-shot object recognition problem by modeling a Siamese
Network architecture for image verification. The Siamese
network is trained to verify if a pair of images belong to
the same class or not. The generic dataset is used to train
the network on the verification task. During inference, the
single training sample available for each one-shot class is
presented along with the test image and verified if they be-
long to same class or not.

Bertinetto et al. [2] suggested a second deep network
after a network, called a learnet to predict parameters in
a previous network. They argued that it is applicable in
1-shot learning, however, the result was not satisfactory.
Meanwhile, Wang and Herbert [17] trained a paired net-
work, one that learns few samples with annotated, cate-
gorized few dataset, and one with larger samples. With a

premise that transform is a type of regression, they learned
a transform function with a multilayered regression neu-
ral network. We use a similar method to train our gener-
ator. Similarly, Vinyals et al. [16] trained a matching net-
work, but with small labeled support set and large unlabeled
dataset. These ideas were successful in terms of transferring
the knowledge to other dataset.

For face recognition specifically, [11] finds a unified em-
bedding for faces in a space where Euclidean distance be-
tween two points correspond to a similarity measure be-
tween the two corresponding faces. They use a deep convo-
lutional Neural Network trained on Triplet loss to achieve
this.

2.3. Transfer learning

Transfer learning [14], first introduced by Thrun, uti-
lizes knowledge extracted and saved from a specific topic
to help the learning on the other similar field. Although a
large amount of data is required in at least one domain, the
model can use this knowledge to generalize to another do-
main where less data is available. This is most commonly
used by fine-tuning models trained on ImageNet. Transfer
learning for faces was attempted by [13] who find that low
dimensional features work best.

3. Datasets
We used a subset of the 1 Million Celebrities dataset

from Microsoft Research [5]. As described in the intro-
duction, it comprises of face images collected from the
internet. The 1M Celeb Faces dataset is designed for
two benchmark tasks: a classification challenge across
one million categories, which they describe as the largest
classification problem in computer vision till date. The
second benchmark task focuses on low shot recognition
for facial recognition, and provides training data parti-
tioned into base and novel classes. They provide 20,000
base classes (people) with 50-100 training images per
person. They also provide 1000 novel classes with 1-5
images per person for training. The test set consists
of between 10-20 images per person. Our original in-
tention was to evaluate on this low shot benchmark, but
we noticed several problems with the data that they provide.

The complete dataset consists of complex and unpro-
cessed images and the data distribution within this celebrity
1M dataset is not uniform. Also, the images are not aligned
or cropped. Hence, the dataset originally provided for
the low-shot learning benchmark task warrants us to run
face detection along with face recognition algorithms,
which we felt was beyond the scope of our project. The
dataset that we use is a cleaner subset of the 1 Million
Celebrities dataset which has been cropped and aligned.
This was originally provided as a sample to look at before
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Figure 2. Sample image from each base class

downloading the bigger dataset and we thought this would
be a useful starting point to debug our approach. We use
this dataset instead of the 1 Million Celebrities dataset to
eliminate the challenges presented by scalability and noisy
samples and focus on low-shot learning.

We create our own low-shot learning scenario as follows:
our base classes consists of 9 different celebrities, and we
have 50 training images and 10 test images per class. How-
ever, we had to form novel classes by manually collect-
ing images from the internet, which we then cropped and
aligned. This resulted in 5 novel classes, with 5 training im-
ages and 10 test images per class. Sample images from the
base classes are shown in Figure 2. All our input images are
scaled to size 300x300 and also normalized.

4. Technical Approach
Our key idea is to improve classification accuracy by

generation. In order to assess if generation actually helps
with our data, we ran a preliminary experiment based on a
naive jittering strategy. Since the results from this experi-
ment were promising, we then implemented the hallucina-
tion approach from the Hariharan and Girshick paper. We
outline both approaches below.

4.1. Preliminary Approach

To examine the performance of a powerful classifier
when the amount of data is limited, we train a convolutional
neural network end-to-end on first the base classes, and then
the entire training data. This is also used as a baseline for
evaluation. For our baseline model, we train the ResNet10
[7] architecture which stands as the state-of-the-art archi-
tecture for Image Recognition and won the ImageNet 2015
Recognition and Detection challenges. We use this network
for all our experiments on Low-shot dataset.

Figure 3. ResNet10 architecture. White circles represent ReLU
and black circles show batch normalization. Image credit: Sup-
plementary material [6]

Since we are using the ResNet model, we don’t explic-
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itly add dropout layers or regularization techniques because
ResNet makes certain assumptions about the function to
model that makes training very deep networks possible. It
tries to find a solution close to identity mapping. At each
stage it aims to model the residual by using stacked net-
works. The identity mapping is modelled by shortcut con-
nections from the input to the output of each stage. The
architecture of this network is described in Figure 3.

We feed images from our training set to this network us-
ing an in-built data loader. The model is trained using SGD
to optimize cross entropy loss over the class labels. This
gives us a test accuracy of 82% on our base classes and
32% on the novel classes, from which we concluded that
the classifier performs well when there are sufficient train-
ing examples, but is significantly affected when this number
goes down.

4.1.1 Data augmentation by jittering

Following this, we implement a preliminary augmentation
strategy based on jittering the pixels of input images to cre-
ate new images. We experimented with four kinds of trans-
forms: random rotation within a range of angles, random
cropping and scaling within a boundary, horizontal flipping
of images, and brightness transforms that increase and de-
crease the brightness. Of these, we found that the brightness
transform resulted in images that were patchy and occluded,
and decided not to include it in the final set of transforms
used.

After applying the above transformations to our input
pixels, we saved the generated images into our training set.
Since we had 5 example images per novel category, each ex-
ample resulted in over 8-10 jittered images, which made our
novel set almost as big as our base set. However, the gener-
ated images were still fairly similar to the original ones and
intra-class variations between the images wasn’t large. We
then re-trained our classifier on this new novel set, resulting
in test accuracy going up by over 6 points on the novel set.
This validated our hypothesis that augmentation improves
performance, and we implemented a more targeted genera-
tion strategy, which is discussed below.

4.2. Low-shot learning by hallucination

The idea here is still to augment the training set with gen-
erated examples of the novel classes. However, the augmen-
tation is done with respect to image features, and not raw
image pixels anymore. In order to operate in this space, we
can no longer train our ResNet end-to-end, and thus break
it up into a feature extractor, which is trained in the rep-
resentation learning phase, and a linear classifier, which is
trained in the low-shot learning phase.

• Representation learning - Using the base categories
alone, a feature extractor is trained. Our feature extrac-

Figure 4. Pipeline of generation by hallucination

tor is the ResNet-10 that we described above, however,
[6] also experiment with ResNet-50, which they find
performs better. Since our data set is quite small, we
didn’t want to increase the capacity of our model too
much as it would overfit, and so we stick to ResNet-
10. Another key difference from the original paper
is that we currently use Cross-Entropy Loss on the
class labels, whereas [6] use Squared Gradient Mag-
nitude loss, which was formulated to encode the low-
shot training objective. We wanted to experiment with
the SGM loss as well, which gave them an 8 to 10 point
improvement over vanilla classification loss, however,
implementing it was tricky and we didn’t have enough
time.

• Low-shot learning - In this phase, the learner is given
a mix of features from both the base and novel classes,
and has to learn a classifier to distinguish between
them. For our dataset, this means a total of 14 class la-
bels. In order to improve its performance on the novel
class, the learner is allowed to add new examples back
into the training set using the features given to it. Our
learner does this by hallucination, which we describe
below.

4.2.1 Hallucination

The intuition behind hallucination is to transfer transforms
that cause significant intra-class variation from one class to
another in order to generate examples. This can be broadly
divided into four steps:

1. Clustering: The features of each base class are grouped
into clusters using K-means clustering. The number of
clusters is an important hyperparameter that had a huge
impact on our final results. We used 10 clusters per
class, and since each class has 50 images, that would
result in 5 images per cluster. Each cluster is repre-
sented by a vector which is the cluster centroid. Al-
though we aren’t able to visualize the results of clus-
tering, intuitively we expect the clusters to represent
distinct variations; for instance, all front-facing face
images in a class would go into one cluster, whereas
profile images would go into another.
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Figure 5. Example mined analogies. Each row shows the four im-
age clusters that form the four elements in the analogy. Row 1:
birds with a sky backdrop vs birds with greenery in the back-
ground. Row 2: whole fruits vs cut fruit. Row 3: machines
(printer, coffee making) in isolation vs the same machine operated
by a human.

2. Finding analogy pairs: Building on the intuition above,
the difference between two cluster centroids ca1 and ca2
in the same class a can be considered as a transforma-
tion. For each pair of centroids within a class, we then
search for an analogous pair of centroids in all other
classes. This is done by finding a transform cb1 - cb2 in
another class b such that the cosine distance between
(ca1 - ca2) and (cb1 - cb2) is minimized. To best illustrate
what an analogy pair would look like, we present an
image from the Hariharan and Girshick paper (Fig. 5)
although it’s based on classes in ImageNet.

3. Training a generator: All analogy pairs found above
with cosine similarity greater than zero are compiled
into a dataset DG. This is used to set the parame-
ters of a generator G using a combination of regres-
sion and classification. From (ca1 , ca2 , cb1, cb2), we feed
(ca1 , cb1, cb2) as input to the generator and ask it to gen-
erate ĉa2 . In addition to this, it has to classify ĉa2 into
class a. The mean squared error between ĉa2 and ca2 ,
called Lmse(ĉa2 ,ca2) forms the regression loss, and is
used to train the generator along with cross entropy
loss on classification, called Lcls(W, ĉa2 , a) (where W
is the predicted class). Figure 6 shows how both losses
decrease across epochs while training.

4. Generating examples: In order to generate examples
for a novel class with label l, we feed a seed image
from the existing novel class images into the trained
generator, along with a pair of centroids ca1 and ca2
where the class a is chosen at random. The generator
will then output a hallucinated feature vector which is
added to the training set for the class l.

The number of examples to generate per novel class is
also a hyperparameter. In the original paper, they determine
this dynamically since each novel class has a different num-
ber of examples. But since all our classes have 5 examples

Figure 6. Loss when using extracted features for classification

each, we generate 5 more images per class. This results in
a total of 10 images per novel class, which doubles the data
available for the classifier to learn from. On the contrary,
when we add too many hallucinated examples, the perfor-
mance drops.

5. Experiments

5.1. Naive generation

We first describe the results of our preliminary approach
in combination with the naive augmentation strategy. As de-
scribed above, the baseline for this was a ResNet trained on
base and novel classes together, and the results are in Table
1. Since our dataset is fairly small, we are able to achieve
100% training accuracy on the network within 10 epochs.
We find that test accuracy is not so high and reaches 82%
on the base classes. This could possibly be due to overfit-
ting, but is high enough to convince us that it generalizes.
As expected, while testing on novel classes, it doesn’t do
well and achieves 32%, less than half as on the base classes.
We also report accuracy on base and novel classes together
mainly to show the impact of augmentation.

Class Train Accuracy(%) Test Accuracy (%)

Base 100 82
Novel 100 32

Base + Novel 100 58.9

Table 1. Baseline results using ResNet10

After augmenting the training set by our naive jittering
approach, we are interested in the test performance on the
novel classes, since no new examples were added for the
base classes. The results for this are reported in Table 2. We
find that there is an increase in accuracy of over 6% on the
novel classes alone, but only 2% when the base and novel
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Figure 7. Jittering on novel classes

Figure 8. Jittering on novel classes

classes are tested together. Also, since this approach re-
sulted in an almost 10-fold increase in training data, training
accuracy drops a little, meaning the network can no longer
memorize the data in 10 epochs.

Class Train Accuracy(%) Test Accuracy (%)

Novel 100 38.7
Base + Novel 98.89 60.43

Table 2. ResNet10 results after Jittering on novel classes

5.2. Generation by hallucination

We train a ResNet again as a feature extractor, but this
is only trained on images from the base class. That is, the
parameters of the feature extractor are set solely by looking
at the base set, although during test time, the trained extrac-
tor is also used to extract features from the novel class. The
features extracted are 512-dimensional, and are passed to
a linear classifier that gives the probability distribution of

an input image (specifically, image feature) over 14 classes.
The extractor and the classifier are trained separately using
SGD. To summarize, the feature extractor is trained on base
class alone, while the classifier is trained on base and novel
classes.

5.2.1 Baseline results

For learning the low-shot classifier, a learning rate of 0.1
is used. We use cross entropy loss and stochastic gradi-
ent descent with momentum 0.9. The weight decay is set
to 0.0001. The results are recorded in Table 3. Interest-
ingly, on testing the classifier with features from the base
class test set, we get an accuracy of 72%, which is 10 points
lower than the end-to-end trained ResNet. This could be be-
cause training the classifier separately, without giving it ac-
cess to the parameters of the convolutional layers or the in-
put image pixels is resulting in loss of information. Hyper-
parameter tuning did not majorly improve this number. On
the novel classes alone, as well as on base and novel classes
together, the classifier achieves a higher test performance
than the end-to-end ResNet did.

Class Train Accuracy(%) Test Accuracy (%)

Base 100 72
Novel 100 36.43

Base + Novel 100 59.2

Table 3. Classification using extracted features

5.2.2 Generation results

Cluster size Max examples per class Test Accuracy (%)

10 10 40.8
5 10 28.5
5 20 24.7

Table 4. Novel class accuracy with different hyperparameters

As mentioned in the Section 4.2, the most important hy-
perparameters for our generation approach was cluster size
and maximum number of examples to generate per class.
We used a cluster size of 10 ([6] use 100 clusters per class
for ImageNet). Also, we generated until there were 10 ex-
amples per class, and since we already have 5, there were 5
additionally generated images for each class. The effect of
other hyperparameters is tabulated in Table 4.

Class Train Accuracy(%) Test Accuracy (%)

Novel 100 40.8
Base+Novel 100 62.14

Table 5. Classification using generated examples
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We then re-trained the classifier on three kinds of fea-
tures: features from the base set, features from the small
novel set, and hallucinated features for the novel set. We
then measured test set accuracy on the novel class test fea-
tures alone, as well as base and novel test features together.
The results are described in Table 5, where it can be seen
that we achieve a 4% improvement over our baseline.

6. Conclusions and Future Work
In this project, we implemented the ResNet10 architec-

ture to obtain a baseline for the Face recognition classifica-
tion task. We explored the use of jittering as a technique to
augment our dataset which performed better than the base-
line model. Following this, to improve upon this baseline,
we extract features from our base classes and implemented
the hallucination technique as proposed by Hariharan and
Girshick [6] to augment our novel set. This resulted in a 4%
improvement over our baseline. While not a dramatic in-
crease, it convinces us that augmentation through hallucina-
tion has potential in improving tasks where training data is
sparse. In the future, we would like to explore stronger fea-
ture extractures for this domain, such as VGG-Face to see
if they work better than the ResNet10 architecture used in
this project. Another possible direction is to explore the use
of larger datasets with more number of classes and cleaner,
better aligned images than the one used in this project.
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