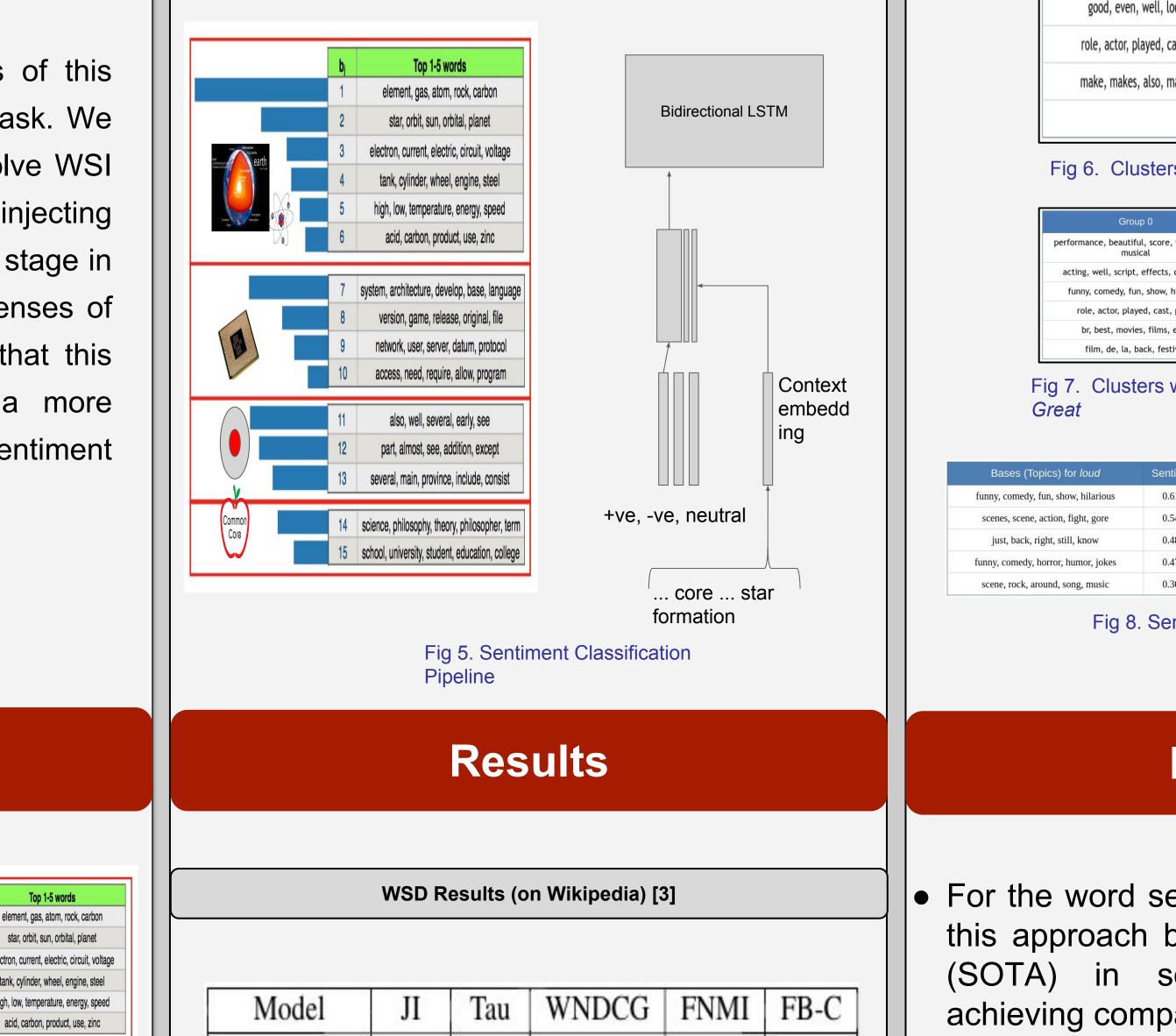
Efficient Graph-based Word Sense Induction

Sentiment Classification Results (on IMDb Sentiment Dataset) Abstract Model Dataset Random Skip Senti Di ve gram DIVE WIKIPEDIA The correct resolution of multiple senses of a 0.730 0.867 20% 0.820 CLUSTER TOPICAL TOPICS polysemous word is crucial for a lot of 100% 0.880 0.840 0.843 WORD2VEC CLUSTER downstream NLP applications. In this work we SENSE EMBEDDINGS Table 3: Accuracy of sentiment classification Fig 3: Clustering for WSD propose a more efficient and interpretable EM **Qualitative Results (on IMDb Sentiment Dataset)** way to perform word sense induction (WSI) SENTIMENT TOPICAL EVALUATION Group 0 Group 1 building a global non-negative vector by performance, beautiful, score, wonderfu like, something, two, never, different embedding bases [1] (which are interpretable Fig 2. Pipeline of the WSD Fig 4: Clustering for musical approach **Sentiment Analysis** funny, comedy, fun, show, hilarious like topics) and clustering them for each acting, well, script, effects, direction polysemous word. We then try to extend the success of this Top 1-5 words element, gas, atom, rock, carbon **Bidirectional LSTM** approach to the sentiment analysis task. We star, orbit, sun, orbital, planet electron, current, electric, circuit, voltage propose a novel method to jointly solve WSI tank, cylinder, wheel, engine, steel high, low, temperature, energy, speed and sentiment analysis: efficiently injecting acid, carbon, product, use, zinc sentiment information during the WSI stage in system, architecture, develop, base, language order to discover sentiment-aware senses of version, game, release, original, file network, user, server, datum, protocol each word. Our experiments show that this access, need, require, allow, program Context semi-supervised method provides a more embedd Great also, well, several, early, see ing interpretable solution for the sentiment part, almost, see, addition, except Bases several, main, province, include, consist analysis problem. funny, comedy



good, even, well, look, guy	br, best, movies, films, ever		
role, actor, played, cast, plays	english, little, enjoy, line, children		
make, makes, also, made, way	go, put, two, together, come		
	film, de, la, back, festival		

Fig 6. Clusters based only on WSD for the word Great

Group 0	Group 1			
performance, beautiful, score, wonderful, musical	good, even, well, look, guy			
acting, well, script, effects, direction	like, something, two, never, different			
funny, comedy, fun, show, hilarious	english, little, enjoy, line, children			
role, actor, played, cast, plays	go, put, two, together, come			
br, best, movies, films, ever	make, makes, also, made, way			
film, de, la, back, festival				

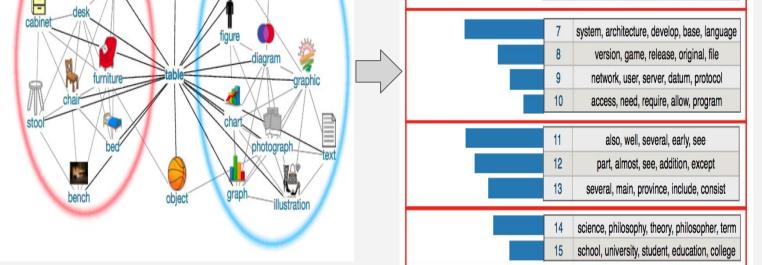
Fig 7. Clusters with induced sentiment for the word

opics) for <i>loud</i>	Sentiment	Bases (Topics) for acting	Senti
fun, show, hilarious	0.6157	performance, beautiful, score, wonderful, musical	0.7
action, fight, gore	0.5447	acting, well, script, effects, direction	0.22
ght, still, know	0.4846	good, even, well, look, guy	-0.0
norror, humor, jokes	0.4720	like, bad, really, good, characters	-0.3
ound, song, music	0.3041	plot, boring, ending, stupid, predictable	-0.5

Fig 8. Sentiment scores assigned to bases

Impact

• For the word sense disambiguation tasks, this approach betters the state of the art (SOTA) in some experiments while achieving comparable results in others. • This approach is much more efficient than the previous SOTA approaches while being more interpretable. • For the sentiment task while achieving comparable results this approach makes the process much more interpretable.



Approach

Fig. 1. Clustered DIVE topics. Ego network as shown in [2]

- 1. Generate *D* dimensional DIVE embeddings from the dataset
- 2. For each query word:
 - a. Find relevant bases(topics)
 - b. Use topical similarity for clustering
 - c. Each cluster represents a sense
 - d. Find a sense embedding per cluster
- 3. Improve these sense embeddings using EM over skip-gram training

$SIM(b_i,b_j,q) = (1{-}u$	$(w)\cos(\mathrm{f}_{(b_i,q)},\mathrm{f}_{(b_j,q)})\cdot\log(\min(\mathrm{w}_q[b_i],\mathrm{w}_q[b_j]))+(w)sent_sim(b_i,b_j,q)$
b _i , b _j w _q [b _i], w _q [b _j] cos(a, b) sent_sim(a, b, q) word q	basis referenced by index <i>i</i> , <i>j</i> DIVE value for word <i>q</i> for basis b_i , b_j cosine similarity betwn two feature vectors for word <i>q</i> sentiment similarity between two feature vectors for

All-1	19.2	60.9	28.8	0	62.3
Rnd	21.8	62.8	28.7	2.8	47.4
MSSG	22.2	62.9	29.0	3.2	48.9
WG	21.2	61.2	29.0	1.6	58.1
WG+EM	21.0	61.5	29.0	1.3	57.8
DIVE (100)	21.9	61.9	29.3	3.1	50.6
DIVE (300)	22.1	62.8	29.1	3.5	49.9

Table 1. Semeval 2013 task

Model	TWSI			balanced TWSI		
	Р	R	F1	Р	R	F1
MSSG rnd	66.1	65.7	65.9	33.9	33.7	33.8
MSSG	66.2	65.8	66.0	34.3	34.2	34.2
WG	68.6	68.1	68.4	38.7	38.5	38.6
WG+EM	68.3	67.8	68.0	38.4	38.2	38.3
DIVE rnd	63.4	63.0	63.2	33.4	33.2	33.3
DIVE (100)	67.6	67.2	67.4	39.7	39.5	39.6
DIVE (300)	67.4	66.9	67.2	39.0	38.8	38.9

Table 2 TWSI task

Future Work

- Experiment with explicit dynamic cluster count selection.
- Attention based end-to-end approach for sentiment analysis

References

- "Unsupervised Hypernym Detection by Distributional Inclusion Vector Embedding", CoRR-2017
- 2. M. Pelevina and N. Arefiev and C. Biemann and A. Panchenko, "Making sense of word embeddings." ACL representation workshop 2017.
- 3. H.-S. Chang, A. Agrawal, A. Ganesh, A. Desai, V. Mathur and A. McCallum, "Efficient Graph-based Word Sense Induction by Distributional Inclusion Vector Embeddings," TextGraphs 2018 (NAACL workshop).